Exam Symmetry in Physics

Date

February 2, 2012

Room

5419.0113

Time

9:00 - 12:00

Lecturer D. Boer

- Write your name and student number on every separate sheet of paper
- You are not allowed to use the lecture notes, nor other notes or books
- All subquestions (a, b, etc) of the three exercises have equal weight
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

Exercise 1

Consider a regular pentagon and its symmetry group, the dihedral group D_5 : $gp\{c,b\}$ with $c^5 = b^2 = (bc)^2 = e$.

(a) Argue, using geometrical arguments, that D_5 has four conjugacy classes:

$$(e), (c), (c^2), (b)$$

- (b) Determine the dimensions of all inequivalent irreps of D_5 .
- (c) Construct the character table of D_5 , using for instance the variables $x \equiv \cos(2\pi/5) = -\frac{1}{4}(1-\sqrt{5})$ and $y \equiv \cos(4\pi/5) = -\frac{1}{4}(1+\sqrt{5})$, that satisfy $x^2 + y^2 = \frac{3}{4}$ and $xy = -\frac{1}{4}$.
- (d) Identify the proper invariant subgroup(s) of D_5 .

Consider a regular five-sided pyramid with a regular pentagon as base (see figure) and its symmetry group C_{5v} .

(e) Show that $C_{5v} \cong D_5$ using cycle notation.

- (f) Construct explicitly the three-dimensional vector representation D^V for the generators of both C_{5v} and D_5 , where D_5 is viewed as a subgroup of the rotations in three dimensions.
- (g) Decompose D^V of both D_5 and C_{5v} into irreps and use this to conclude whether these groups allow in principle for an invariant three-dimensional vector, such as an electric dipole moment.

Exercise 2

Consider a classical potential $V(|\vec{r}|)$ experienced by a charged particle at position $\vec{r} = (x, y, z)$ in three dimensions.

- (a) Show that the potential V is invariant under O(3) transformations.
- (b) What is the defining representation of O(3)?
- (c) Describe under which representations of O(3) the force $\vec{F} = -\vec{\nabla}V$ and the torque $\vec{\tau} = \vec{r} \times \vec{F}$ transform.
- (d) Use symmetry arguments to argue that the torque must vanish for the given potential V.

Next consider the case of a uniform electric field. A particle with charge q will then experience a Lorentz force $\vec{F} = q\vec{E}$.

- e) What is the group of isometries (transformations that preserve distances) under which the corresponding potential is invariant?
- f) Use symmetry arguments to argue that there cannot be a nonzero torque either in this case.

Exercise 3

Consider the angular momentum operators L_i (i = 1, 2, 3) acting on the states $|l, m\rangle$.

- (a) Explain why the eigenvalues of the operator $\vec{L}^2 = \sum_i L_i^2$ label the irreducible representations of a Lie group with Lie algebra $[L_i, L_j] = i \sum_k \epsilon_{ijk} L_k$.
- (b) Write down the explicit matrix for L_z acting on the space of $|l, m\rangle$ states for non-negative integer l.
- (c) Use the result of (b) to show that the characters of SO(3) matrices are of the form:

$$\chi^{(l)}(\theta) = 1 + 2\left(\cos(\theta) + \ldots + \cos(l\theta)\right)$$

- (d) Draw a picture of the parameter space of SO(3) and indicate the conjugacy classes.
- (e) Explain the relation between the l=1 irrep and the vector representation of SO(3).